Brain-Rain.

Science in action. And also, goofing off.

Join me in my quest to become brilliant.

Posts tagged astronomy

Sep 29

beautifulmars:

The Loneliest Crater on All of Mars

From rim to rim, this crater measures approximately 68 m (225 ft).

(via laboratoryequipment)


Sep 28
distant-traveller:

New observations explain why Milky Way-like galaxies are so common in the Universe

For decades scientists have believed that galaxy mergers usually result in the formation of elliptical galaxies. Now, for the the first time, researchers using ALMA and a host of other radio telescopes have found direct evidence that merging galaxies can instead form disc galaxies, and that this outcome is in fact quite common. This surprising result could explain why there are so many spiral galaxies like the Milky Way in the Universe.
An international research group led by Junko Ueda, a Japan Society for the Promotion of Science postdoctoral fellow, has made surprising observations that most galaxy collisions in the nearby Universe — within 40–600 million light-years from Earth — result in so-called disc galaxies. Disc galaxies — including spiral galaxies like the Milky Way and lenticular galaxies — are defined by pancake-shaped regions of dust and gas, and are distinct from the category of elliptical galaxies.
It has, for some time, been widely accepted that merging disc galaxies would eventually form an elliptically shaped galaxy. During these violent interactions the galaxies do not only gain mass as they merge or cannibalise each-other, but they are also changing their shape throughout cosmic time, and therefore changing type along the way.
Computer simulations from the 1970s predicted that mergers between two comparable disc galaxies would result in an elliptical galaxy. The simulations predict that most galaxies today are elliptical, clashing with observations that over 70% of galaxies are in fact disc galaxies. However, more recent simulations have suggested that collisions could also form disc galaxies.
To identify the final shapes of galaxies after mergers observationally, the group studied the distribution of gas in 37 galaxies that are in their final stages of merging. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and several other radio telescopes [1] were used to observe emission from carbon monoxide (CO), an indicator of molecular gas. 
The team’s research is the largest study of molecular gas in galaxies to date and provides unique insight into how the Milky Way might have formed. Their study revealed that almost all of the mergers show pancake-shaped areas of molecular gas, and hence are disc galaxies in the making. Ueda explains: “For the first time there is observational evidence for merging galaxies that could result in disc galaxies. This is a large and unexpected step towards understanding the mystery of the birth of disc galaxies.”
Nonetheless, there is a lot more to discover. Ueda added: “We have to start focusing on the formation of stars in these gas discs. Furthermore, we need to look farther out in the more distant Universe. We know that the majority of galaxies in the more distant Universe also have discs. We however do not yet know whether galaxy mergers are also responsible for these, or whether they are formed by cold gas gradually falling into the galaxy. Maybe we have found a general mechanism that applies throughout the history of the Universe.”

Image credit: ALMA (ESO/NAOJ/NRAO)/SMA/CARMA/IRAM/J. Ueda et al.

distant-traveller:

New observations explain why Milky Way-like galaxies are so common in the Universe

For decades scientists have believed that galaxy mergers usually result in the formation of elliptical galaxies. Now, for the the first time, researchers using ALMA and a host of other radio telescopes have found direct evidence that merging galaxies can instead form disc galaxies, and that this outcome is in fact quite common. This surprising result could explain why there are so many spiral galaxies like the Milky Way in the Universe.

An international research group led by Junko Ueda, a Japan Society for the Promotion of Science postdoctoral fellow, has made surprising observations that most galaxy collisions in the nearby Universe — within 40–600 million light-years from Earth — result in so-called disc galaxies. Disc galaxies — including spiral galaxies like the Milky Way and lenticular galaxies — are defined by pancake-shaped regions of dust and gas, and are distinct from the category of elliptical galaxies.

It has, for some time, been widely accepted that merging disc galaxies would eventually form an elliptically shaped galaxy. During these violent interactions the galaxies do not only gain mass as they merge or cannibalise each-other, but they are also changing their shape throughout cosmic time, and therefore changing type along the way.

Computer simulations from the 1970s predicted that mergers between two comparable disc galaxies would result in an elliptical galaxy. The simulations predict that most galaxies today are elliptical, clashing with observations that over 70% of galaxies are in fact disc galaxies. However, more recent simulations have suggested that collisions could also form disc galaxies.

To identify the final shapes of galaxies after mergers observationally, the group studied the distribution of gas in 37 galaxies that are in their final stages of merging. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and several other radio telescopes [1] were used to observe emission from carbon monoxide (CO), an indicator of molecular gas. 

The team’s research is the largest study of molecular gas in galaxies to date and provides unique insight into how the Milky Way might have formed. Their study revealed that almost all of the mergers show pancake-shaped areas of molecular gas, and hence are disc galaxies in the making. Ueda explains: “For the first time there is observational evidence for merging galaxies that could result in disc galaxies. This is a large and unexpected step towards understanding the mystery of the birth of disc galaxies.

Nonetheless, there is a lot more to discover. Ueda added: “We have to start focusing on the formation of stars in these gas discs. Furthermore, we need to look farther out in the more distant Universe. We know that the majority of galaxies in the more distant Universe also have discs. We however do not yet know whether galaxy mergers are also responsible for these, or whether they are formed by cold gas gradually falling into the galaxy. Maybe we have found a general mechanism that applies throughout the history of the Universe.”

Image credit: ALMA (ESO/NAOJ/NRAO)/SMA/CARMA/IRAM/J. Ueda et al.


Sep 21
spaceplasma:

Saturn’s Rings at Maximum Tilt

In March 2003, Saturn’s rings were at maximum tilt toward Earth, a special event occurring every 15 years. With the rings fully tilted, astronomers get the best views of the planet’s Southern Hemisphere. They took advantage of the rings’ unique alignment by using Hubble to capture some stunning images.

Credit: NASA, ESA, E. Karkoschka, G. Bacon (STScI)

spaceplasma:

Saturn’s Rings at Maximum Tilt

In March 2003, Saturn’s rings were at maximum tilt toward Earth, a special event occurring every 15 years. With the rings fully tilted, astronomers get the best views of the planet’s Southern Hemisphere. They took advantage of the rings’ unique alignment by using Hubble to capture some stunning images.

Credit: NASA, ESA, E. Karkoschka, G. Bacon (STScI)

(via likeaphysicist)


Sep 18
distant-traveller:


Hubble looks at light and dark in the universe







This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena.
Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective.
However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18.
These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173.

Image credit: ESA/NASA

distant-traveller:

Hubble looks at light and dark in the universe

This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena.

Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective.

However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18.

These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173.

Image credit: ESA/NASA


Sep 9
humanoidhistory:

The planet Saturn, observed by the Hubble Space Telescope on February 24, 2009.  The moon Titan can be seen at upper righ while the white icy moons — much closer to Saturn, hence much closer to the ring plane in this view — are, from left to right, Enceladus, Dione, and Mimas. (Hubblesite)

humanoidhistory:

The planet Saturn, observed by the Hubble Space Telescope on February 24, 2009.  The moon Titan can be seen at upper righ while the white icy moons — much closer to Saturn, hence much closer to the ring plane in this view — are, from left to right, Enceladus, Dione, and Mimas. (Hubblesite)

(via spaceexp)


Sep 3
spaceexp:

Elephant’s Trunk Nebula in 3D

spaceexp:

Elephant’s Trunk Nebula in 3D


Sep 2
spaceexp:

Galaxy Arp 188 and the Tadpole’s Tail

spaceexp:

Galaxy Arp 188 and the Tadpole’s Tail


Sep 1
thedemon-hauntedworld:

Enhanced-color composite of Jupiter, from the Voyager 1 spacecraft in 1979. Credit: NASA/JP

thedemon-hauntedworld:

Enhanced-color composite of Jupiter, from the Voyager 1 spacecraft in 1979.
Credit: NASA/JP

(via thedemon-hauntedworld)


Aug 24

ohstarstuff:

Happy 1 (Martian) Year Anniversary Mars Curiosity!

Today NASA’s Mars Curiosity rover will complete a Martian year — 687 Earth days on the Red Planet. Below are some of Curiosity’s accomplishments in Year 1 as compiled by NASA.

  • In August 2012, Curiosity discovered an ancient riverbed at its landing site. Nearby, at an area known as Yellowknife Bay, the mission met its main goal of determining whether the Martian Gale Crater ever was habitable for simple life forms. The answer, a historic “yes,” came from two mudstone slabs that the rover sampled with its drill. Analysis of these samples revealed the site was once a lakebed with mild water, the essential elemental ingredients for life, and a type of chemical energy source used by some microbes on Earth. If Mars had living organisms, this would have been a good home for them. 

  • Assessed natural radiation levels both during the flight to Mars and on the Martian surface provides guidance for designing the protection needed for human missions to Mars.

  • Measured heavy-versus-light variants of elements in the Martian atmosphere indicate that much of Mars’ early atmosphere disappeared by processes favoring loss of lighter atoms, such as from the top of the atmosphere. Other measurements found that the atmosphere holds very little, if any, methane, a gas that can be produced biologically.

  • Made first determinations of the age of a rock on Mars and how long a rock has been exposed to harmful radiation provide prospects for learning when water flowed and for assessing degradation rates of organic compounds in rocks and soils.

 Source: NASA.gov

(via iaccidentallyallthephysics)


Aug 18
featherandarrow:

Titan aka the Mermaid Moon

featherandarrow:

Titan aka the Mermaid Moon

(via scientificsatellite)


Page 1 of 11